
Numerical Analysis of QAOA for Financial Optimization

Nazim Turan

August 05, 2024

1 Introduction

Although practical quantum computing is still relatively new, it has been heavily explored for solv-
ing problems that are considered intractable or requiring an immense amount of time to be solved.
Quantum computing can be applied in finance, either by improving current methods or providing a
different perspective of solutions to existing problems. In contrast to classical computing, quantum
computing holds the promise of highly efficient algorithms, providing exponential speedups for some
technologically important problems. Typical problems that are currently being solved in finance
include stock market prediction, portfolio optimization and fraud detection. The idea of applying
quantum mechanics to finance is not a new one: some well-known financial problems can be directly
expressed in a quantum-mechanical form. As an example, the Black Scholes Merton formula can
be mapped to the Schrodinger equation, modeling the arbitrage relationships that led to its formu-
lation. Even the entire financial market can be modeled as a quantum process, where quantities
that are important to finance, such as the covariance matrix, emerge naturally [5]. Many problems
in finance can be expressed as optimization problems. These tasks which are particularly hard for
classical computers, but find a natural formulation using quantum optimization methods [17]. In
recent years, this field has known a tremendous growth, partly due to the commercial availability
of quantum annealers [5]. Another way to to approach financial problems is to search for patterns
in past data. This is a natural way to consider economic forecasting problems, an area where ma-
chine learning methods have proved to be extremely successful. The computational cost of these
approaches, however, is often prohibitive. In recent years, there has been an impressive effort to
develop quantum machine learning algorithms [14], which many hope will provide the tools to satisfy
our growing data requirements. Moreover, the behavior of some financial systems can be predicted
by applying Monte Carlo methods. The act of sampling a distribution function can limit the speed,
and hence the applicability, of the algorithm. In a series of recent papers, it was suggested this task
could be done efficiently by sampling a quantum system [10, 16, 23]. Optimization problems are
at the core of many financial problems, with the most obvious example being portfolio optimiza-
tion. Portfolio optimization is an NP-Hard problem, which means that it is extremely difficult, if
not impossible, for classical computers to efficiently determine the best choice of portfolio. This is
where quantum computing can make a difference and the way to do that is by implementing quan-
tum optimization algorithms on a quantum computer. The most common techniques for quantum
optimization is Quantum Annealing (QA) and the Quantum Approximate Optimization Algorithm
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(QAOA) [5]. Quantum annealing is the physical process of implementing an adiabatic quantum
computation. This process is similar to classical or simulated annealing, where thermal fluctuations
allow the system to jump between different local minima in the energy landscape. As the tempera-
ture is lowered, the probability of moving to a worse solution tends to zero. In quantum annealing,
these jumps are driven by quantum tunneling events. This process explores the landscape of local
minima more efficiently than thermal noise, especially when the energy barriers are tall and narrow
[6]. In practice, it is difficult to fulfill the conditions required for adiabatic quantum computing in a
quantum annealing process. It can be difficult, for instance, to guarantee that the system’s evolution
is fully adiabatic, or that the system is initiated in the true ground state of the initial Hamiltonian.
Quantum annealing is therefore an approximate realization of adiabatic computing. It was shown
by Zagoskin that approximate adiabatic computing can find a solution which is close to optimal - a
problem which is also known to be NP-hard - in polynomial time [5, 24]. Both Quantum Annealing
and the Quantum Approximate Optimization Algorithm search for a combination of two Hamilto-
nians (problem and mixer Hamiltonian) which prepares the ground state of one of the Hamiltonians
as quickly and accurately as possible. QA smoothly interpolates between the two Hamiltonians,
whereas QAOA applies one or the other in an alternating sequence a certain number of times p.
QAOA is considered a heuristic of QA that assumes a certain precision factor. When the precision
is set to be infinite, then QAOA is equivalent to QA. The adiabatic theorem guarantees that the
system, if initially in the ground state of the mixer Hamiltonian and deformed sufficiently slowly,
will remain in the ground state throughout. Optimization with quantum annealing can potentially
give polynomial speedups over both classical algorithms and unoptimized quantum schedules. Op-
timization with QAOA applies the mixer and problem Hamiltonians alternately, using the timings
of these pulses as variational parameters to be optimized over. There is evidence that restricted
forms of QAOA are more powerful than adiabatie protocols with the same restrictions (although
both are known to be quantum universal), but this does not address whether a non-adiabatic an-
nealing procedure can outperform QAOA [9]. In this report, we are going to investigate problems in
finance like securitization that can be expressed in the Quadratic Unconstraint Binary Optimization
(QUBO) formulation [19, 12] and solve them with the QAOA algorithm. As benchmarks, we start
by investigating the well studied problem of Max Cut for 3-regular graphs and euclidean distance
based graphs with QAOA, to verify the correctness of our implementation [24]. In the following
section. we provide an brief analysis of the QAOA algorithm and the Max Cut problem. Then, we
continue with presentation of the mumerical simulations. Finally, we provide insight for the lessons
that we learned based on this work and outlook for the future.

2 Quantum Approximate Optimization Algorithm

QAOA is believed to be a promising algorithm for proving quantum advantage during the NISQ era,
which is why it has been heavily investigated in the last few years. Although QAOA was introduced
in 2014 by Farhi [4], various additional proofs, modifications, bounds and graph analysis have been
provided in the following years. Proofs concerning the performance of QAOA [4, 30, 3, 22, 26, 8, 13]
and detailed analysis of the unique relevant subgraphs that contribute to the expectation value 20
have been provided. Modifications have been proposed such as the Quantum Alternating Operator
Ansatz [29], which extends the original QAOA framework to include a larger family of unitaries.
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Such an ansatz can support the representation of a larger and potentially more useful set of states
than the original formulation, by mixing only within a desired subspace. Lower bounds for the Max-
Cut problem for 3-regular graphs have been provided by Farhi [4] for p = 1 and more recently bounds
for p = 2 and 3 have been provided in [18]. Graph analysis concerning the necessary lowest value of
p in random graphs has been recently carried out in order to understand the locality requirements
of QAOA in order to maximize its performance [27, 25].

One popular aspect of QAOA as an algorithm is the potential resiliency against noise that all
parametrized quantum circuits exhibit. For example, parametrized quantum circuits are employed
in Quantum Neural Networks and Variational Quantum Algorithms, which are typical researched
algorithms that may allow for near-term quantum advantage. QAOA is a hybrid quantum-classical
algorithm, in which a classical computer optimizes 2p angles parameterizing an ansatz wavefunction
by querying a quantum device. This wavefunction encodes an approximate solution to some com-
binatorial optimization problem. For p → ∞, it is known that the ansatz wavefunction encodes the
exact solution, which follows from the adiabatic theorem. QAOA was introduced to solve combina-
torial optimization problems that can be defined on N-bit binary strings z = z1, · · · , zN , where the
goal is to determine a string that maximizes a given classical objective function
C(z) : {+1,−1}N → R≥0. QAOA aims to find a string z that achieves a desired approximation
ratio [2]

C(z)

Cmax
≥ r∗ (1)

where Cmax = maxz C(z).

The problem is initially converted from a classical objective function to a quantum problem
Hamiltonian by turning each binary variable zi to a quantum spin σz

i :

HC = C(σz
1 , σ

z
2 , · · · , σz

N ) (2)

For p-level QAOA, we initialize the quantum system in the |+⟩⊗N state and then apply the
problem Hamiltonian HC and a mixing Hamiltonian HB =

∑N
j=1 σ

x
j alternately to generate a

variational wavefunction

∣∣∣ΨP (γ⃗, β⃗)
〉
= e−iβPHBe−iγPHC · · · e−iβ1HBe−iγ1HC |+⟩⊗N (3)

which is parametrized by 2p variational parameters γi and βi (i = 1, 2, · · · , p) [2]. We then
determine the expectation value HC in this variational state

FP (γ⃗, β⃗) =
〈
ΨP (γ⃗, β⃗)

∣∣∣HC

∣∣∣ΨP (γ⃗, β⃗)
〉

(4)

which is done by repeated measurements of the quantum system in the computational basis.
A classical computer is used to search for the optimal parameters (γ⃗∗, β⃗∗) so as to maximize the
averaged measurement output FP (γ⃗, β⃗),
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(γ⃗∗, β⃗∗) = argmax
γ⃗,β⃗

FP (γ⃗, β⃗) (5)

This is typically done by starting with some initial guess of the parameters and performing simplex
or gradient-based optimization. A figure of merit for benchmarking the performance of QAOA is
the approximation ratio [2]

r =
FP (γ⃗

∗, β⃗∗)

Cmax
(6)

or

r =
FP (γ⃗

∗, β⃗∗)− Cmax

Cmax − Cmin
(7)

which is better metric since it avoids miscalculations when the Cmin is a positive and the Cmax is a
negative number.

The framework of QAOA can be applied to general combinatorial optimization problems. Here, we
focus on its application the Max. Cut problem. which is a combinatorial problem whose approximate
optimization beyond a minimum ratio r∗ is NP-hard. The Max Cut problem is defined for any input
graph G = (V,E) where, V = {1, 2, · · · , N} denotes the set of vertices and V = {(⟨i, j⟩),Wi,j} is
the set of edges, where Wi,j ∈ R≥0 is the weight of the edge ⟨i, j⟩ connecting vertices i and j. The
goal of Max Cut is to maximize the following objective function

HC =
∑
⟨i,j⟩

Wi,j

2
(1− σz

i σ
z
j ) (8)

where an edge ⟨i, j⟩ contributes with weight Wi,j if and only if spins σz
i and σz

j are anti-aligned.

3 Codebase

The codebase of the QAOA algorithm alongside with the various functionality and connectivity with
cloud services has been as a whole designed during this project. The current state of the codebase
includes (but is not limited to) the following:

• Transformation of the initial problem into QUBO formulation

• Selection of the system size (number of qubits) and the alternating levels of problem and
mixing Hamiltonians (p).

• Selection of platform that the QAOA is going to run, among simulators and Quantum Pro-
cessing Units (QPUs) provided by different vendors (e.g. AWS)

• Selection of the classical optimization algorithm that will be used to find the optimal param-
eters of the QAOA algorithm.

• Selection of the initial angles strategy concerning the QAOA parameters, that will assist in
the algorithm converging faster and with higher accuracy.
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• Selection of the objective function that provides the energy landscape that we are investigating
to find the global extremum solution.

• Selection of the circuit strategy that is going to be used by QAOA.

• Ability to consider shot noise and to simulate readout noise in the QAOA results, in order to
have a more realistic environment to draw comparisons with the OPU noise.

In each bullet point introduced here, there is a variety of options to choose from. The library
has been designed in such a way that even more functionality can be easilv added and the
effects to OAOA’s performance be easily deduced and compared with other configurations.In
each bullet point introduced here, there is a variety of options to choose from. The library has
been designed in such a way that even more functionality can be easilv added and the effects
to OAOA’s performance be easily deduced and compared with other configurations.

4 Numerical simulation results

In this section, we present the mumerical results obtained from simulating the Max Cut problem
with the Quantum Approximate Optimization Algorithm (QAOA). The simulations were carried
out in a simulator provided by Rigetti Computing [1] through the cloud platform Forest, known as
the Wavefunction Simulator.

QAOA requires the input problem to be provided as a graph, therefore we investigated two types of
input graphs. These were 3-regular graphs and graphs that are designed as clusters of nodes (based
on their euclidean distance) with a given distance between the clusters and a given connectivity
inside the cluster as well as between cluster nodes.

This report contains a detailed explanation of how the performance of QAOA is affected by
increasing the size of the quantum system N and the times that the problem Hamiltonian and
mixing Hamiltonian are provided in the circuit described with the integer p, which defines the
quality of the approximation. Furthermore, insights about the initialization of the 2p parameters is
provided, as well as insights in how the optimizer should operate.

4.1 Approximation ratio results for a 3-regular graph (seed=0)

In the followins tables we provide the approximation ratio achieved after ontimization for various
svstem sizes and values p for a single 3-regular graph with seed=0. We denote with N the num-
ber of qubits used in the graph, with p the number of alternating cost Hamiltonians and mixing
Hamiltonians, with Opt energy the optimal energy for the specific graph (based on N and p) with
Energy the energy achieved after the optimization based on the best set of angles that were found
by QAOA and with Ratio the approximation ratio as calculated in equation 7.
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N p Opt energy Energy Ratio
6 1 -2.5 -1.43922 0.84846
6 2 -2.5 -2.10295 0.94328
6 3 -2.5 -2.37802 0.98257
6 4 -2.5 -2.47253 0.99608
6 5 -2.5 -2.49772 0.99967
6 6 -2.5 -2.49996 0.99999

Table 1: Results for approximation ratio for the 3-regular graph (seed=0) for N=6.

N p Opt energy Energy Ratio
8 1 -4.0 -2.00692 0.80069
8 2 -4.0 -2.78424 0.87842
8 3 -4.0 -3.36098 0.93610
8 4 -4.0 -3.62749 0.96275
8 5 -4.0 -3.80144 0.98014
8 6 -4.0 -3.92370 0.99237
8 7 -4.0 -3.96720 0.99672
8 8 -4.0 -3.98578 0.99858
8 9 -4.0 -3.99483 0.99948
8 10 -4.0 -3.99794 0.99979

Table 2: Results for approximation ratio for the 3-regular graph (seed=0) for N=8.

N p Opt energy Energy Ratio
10 1 -5.5 -2.44178 0.76475
10 2 -5.5 -3.36847 0.83604
10 3 -5.5 -3.99394 0.88415
10 4 -5.5 -4.41197 0.91631
10 5 -5.5 -4.77194 0.94400
10 6 -5.5 -5.04800 0.96523
10 7 -5.5 -5.28828 0.98371
10 8 -5.5 -5.40603 0.99277
10 9 -5.5 -5.46272 0.99713
10 10 -5.5 -5.48536 0.99887
10 11 -5.5 -5.49418 0.99955

Table 3: Results for approximation ratio for the 3-regular graph (seed=0) for N=10.
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N p Opt energy Energy Ratio
12 1 -7.0 -3.30272 0.76892
12 2 -7.0 -4.53196 0.84575
12 3 -7.0 -5.49924 0.90620
12 4 -7.0 -6.04603 0.94038
12 5 -7.0 -6.38125 0.96133
12 6 -7.0 -6.57759 0.97360
12 7 -7.0 -6.68604 0.98038
12 8 -7.0 -6.76754 0.98547
12 9 -7.0 -6.85116 0.99070
12 10 -7.0 -6.91733 0.99483
12 11 -7.0 -6.95430 0.99714

Table 4: Results for approximation ratio for the 3-regular graph (seed=0) for N=12.

N p Opt energy Energy Ratio
14 1 -7.5 -2.90904 0.74495
14 2 -7.5 -4.37977 0.82665
14 3 -7.5 -4.89842 0.85547
14 4 -7.5 -5.40160 0.88342
14 5 -7.5 -5.69723 0.89985

Table 5: Results for approximation ratio for the 3-regular graph (seed=0) for N=14.

N p Opt energy Energy Ratio
16 1 -9.0 -3.57517 0.74168
16 2 -9.0 -5.18964 0.81855
16 3 -9.0 -5.92861 0.85374
16 4 -9.0 -6.42334 0.87730
16 5 -9.0 -6.82132 0.89625

Table 6: Results for approximation ratio for the 3-regular graph (seed=0) for N=16.

N p Opt energy Energy Ratio
18 1 -10.5 -3.62400 0.71350
18 2 -10.5 -5.54042 0.79335
18 3 -10.5 -6.52271 0.83428
18 4 -10.5 -7.10220 0.85843

Table 7: Results for approximation ratio for the 3-regular graph (seed=0) for N=18.
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N p Opt energy Energy Ratio
20 1 -11.0 -3.37599 0.70677
20 2 -11.0 -5.78943 0.79959
20 3 -11.0 -6.85212 0.84047
20 4 -11.0 -7.67772 0.87222

Table 8: Results for approximation ratio for the 3-regular graph (seed=0) for N=20.

N p Opt energy Energy Ratio
22 1 -12.5 -3.37799 0.68543
22 2 -12.5 -6.46523 0.79191

Table 9: Results for approximation ratio for the 3-regular graph (seed=0) for N=22.

Figure 1: Approximation ratio for a single graph (seed=0) for the 3-regular Max Cut problem for various
values of N and p.

4.2 Optimal angles for a single 3-regular graph (seed=0)

In the following tables, we provide the optimal angles found after optimization for various values of
N and p for the single 3-regular graph (seed=0). Each beta parameter is denoted with B and each
gamma parameter is denoted with G.
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N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5
6 1 0.6964 3.7119
6 2 0.9569 3.6439 0.5719 0.9168
6 3 1.0134 3.5501 0.6859 0.8576 2.8032 4.1865
6 4 1.0666 3.5203 0.7326 0.7705 2.7416 4.1703 2.9534 1.2682
6 5 1.0755 3.4200 0.8314 0.6607 2.5864 3.9566 2.8602 1.1272 2.9617 1.2832
6 6 1.0255 3.3577 0.7118 0.4720 2.5052 3.7627 2.7231 0.8180 2.9092 1.1231 0.1562 4.3277

Table 10: Optimal angles for the 3-regular graph (seed=0) for N=6.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7 B8 G8 B9 G9
8 1 0.7174 3.7231
8 2 0.9859 3.6501 0.5513 0.9279
8 3 1.0513 3.5833 0.8337 0.8725 2.6381 4.1332
8 4 1.1546 3.5023 0.8983 0.7570 2.3910 4.0469 2.7409 0.9657
8 5 1.1582 3.4919 0.9701 0.6922 2.3748 3.9548 2.5648 0.9418 2.8534 1.0800
8 6 1.1565 3.4597 0.9462 0.6613 2.2718 3.9178 2.4665 0.8249 2.7295 1.0835 0.2444 4.3957
8 7 1.2118 3.4108 0.9728 0.6014 2.2858 3.8612 2.3233 0.7904 2.5738 0.8765 0.3416 4.2825 2.9171 4.3286
8 8 1.2202 3.3815 0.9948 0.5440 2.2740 3.8150 2.3394 0.7383 2.4300 0.8149 0.4722 4.0570 2.8360 4.3040 2.9553 1.1783
8 9 1.2201 3.3585 0.9848 0.4951 2.2809 3.7536 2.3421 0.6905 2.4456 0.7392 0.5997 3.9347 2.7455 4.0564 2.8720 1.1291 2.9721 1.1358
8 10 1.2003 3.3271 0.9572 0.4310 2.3046 3.6864 2.3735 0.6218 2.4424 0.6677 0.6128 3.8579 2.6257 3.9196 2.7953 0.9235 2.8980 1.1190 3.0016 1.0930

Table 11: Optimal angles for the 3-regular graph (seed=0) for N=8.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7 B8 G8 B9 G9 B10 G10
10 1 0.7046 3.7164
10 2 0 9941 3.6257 0.5523 0.9069
10 3 1.1301 3.5801 0.8500 0.8381 2.6815 4.1374
10 4 1.1350 3.5362 0.9444 0.7647 2.3953 4.0370 2.7273 0.9925
10 5 1.2336 3.5121 1.0679 0.7205 2.2163 3.9718 2.3217 0.8969 2.6828 0.9574
10 6 1.2209 3.4891 1.0807 0.6741 2.19301 3.9101 2.2777 0.8436 2.4093 0.9094 0.3556 4.1288
10 7 1.1936 3.4830 1.0517 0.6807 2.1643 3.8850 2.2103 0.7988 2.3733 0.8635 0.5641 4.1515 2.8327 4.2618
10 8 1.2246 3.4417 1.0448 0.6434 2.1750 3.8766 2.2044 0.7658 2.2587 0.7950 0.6518 4.0355 2.6570 4.2129 2.8728 1.0825
10 9 1.2068 3.4057 1.0024 0.5674 2.2212 3.8132 2.2358 0.7262 2.2809 0.7399 0.7545 3.9026 2.5928 4.0414 2.7023 1.0518 2.9081 1.0577
10 10 1.2262 3.3666 1.0122 0.5123 2.2377 3.7644 2.2718 0.6858 2.2915 0.7067 0.7911 3.8618 2.4815 3.9132 2.6544 0.9202 2.7530 1.0427 2.9490 1.0423
11 11 1.2303 3.3387 1.0051 0.4566 2.2426 3.7127 2.2910 0.6450 2.3178 0.6751 0.8011 3.8309 2.4217 3.8647 2.5578 0.7946 2.7065 0.9288 2.8048 1.0286 2.9884 1.0436

Table 12: Optimal angles for the 3-regular graph (seed=0) for N=10.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7 B8 G8 B9 G9 B10 G10
12 1 0.7618 3.7457
12 2 1.0956 3.6247 0.5985 0.8834
12 3 1.1991 3.5738 0.9877 0.7723 2.5723 4.0420
12 4 1.2402 3.5210 1.0539 0.7221 2.2573 3.9680 2.7032 0.9312
12 5 1.2288 3.5000 1.0550 0.6961 2.2713 3.9501 2.5185 0.9379 2.8472 1.0885
12 6 1.2233 3.4493 1.0495 0.6267 2.2126 3.8647 2.4308 0.8143 2.6399 0.9854 0.2489 4.2476
12 7 1.9545 3.4220 1.0696 0.5930 2.1789 3.8982 2.2934 0.7422 2.5218 0.8617 0.4153 4.1973 2.9264 1.3057
12 8 1.2706 3.4158 1.1024 0.5697 2.1393 3.8051 2.2320 0.7137 2.3228 0.7797 0.5937 4.0110 2.7552 4.2131 2.9152 1.1893
12 9 1.2573 3.4192 1.1118 0.5687 2.1062 3.7753 2.1841 0.6807 2.2554 0.7456 0.8139 3.9158 2.5333 3.9990 2.7310 1.0434 2.9135 1.1423
12 10 1.2544 3.4019 1.0957 0.5477 2.1091 3.7645 2.1722 0.6561 2.2376 0.7168 0.8508 3.8873 2.3645 3.9103 2.5828 0.8713 2.7635 1.0611 2.9332 1.1391
12 11 1.2493 3.3783 1.0658 0.5106 2.1463 3.7292 2.1834 0.6268 2.2333 0.6744 0.8477 3.8445 2.3423 3.8678 2.4455 0.7555 2.6507 0.8721 2.8034 1.0552 2.9527 1.1102

Table 13: Optimal angles for the 3-regular graph (seed=0) for N=12.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4
14 1 2.2145 0.4334
14 2 1.2123 0.5232 1.1089 6.0626
14 3 1.8674 0.4939 0.5485 3.5567 2.4284 5.7730
14 4 2.1241 0.4240 0.4924 4.0892 2.8668 4.4906 3.0612 0.9657
14 5 1.7569 0.3194 1.1112 3.8238 2.2991 4.0301 2.8480 1.2450 0.2526 4.7512

Table 14: Optimal angles for the 3-regular graph (seed=0) for N=14.
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N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4
16 1 0.7744 3.5827
16 2 1.5622 0.4760 0.8015 6.0594
16 3 1.9091 0.4714 0.6345 3.5419 2.4394 5.8233
16 4 2.0806 0.4262 0.5014 4.0521 2.8889 4.5614 3.0342 0.9620
16 5 1.7983 0.2829 1.0538 3.7434 2.0504 3.8838 2.9623 1.0582 0.4884 5.0378

Table 15: Optimal angles for the 3-regular graph (seed=0) for N=16.

N p B0 G0 B1 G1 B2 G2 B3 G3
18 1 0.8915 3.5462
18 2 1.7932 0.4595 0.6202 6.0517
18 3 1.0805 0.4482 0.7093 3.5521 2.4767 5.8639
18 4 2.0592 0.4201 0.5049 4.0509 2.8919 4.5958 3.0325 0.9638

Table 16: Optimal angles for the 3-regular graph (seed=0) for N=18.

N p B0 G0 B1 G1 B2 G2 B3 G3
20 1 0.9763 3.4917
20 2 1.9745 0.4500 0.4837 6.0409
20 3 2.0744 0.4009 0.7749 3.5685 2.5351 5.9161
20 4 2.0900 0.4020 0.5328 4.0194 2.8881 4.4914 3.0211 1.1297

Table 17: Optimal angles for the 3-regular graph (seed=0) for N=20.

N p B0 G0 B1 G1
22 1 1.0395 3.4632
22 2 2.1018 0.4586 0.3897 6.0217

Table 18: Optimal angles for the 3-regular graph (seed=0) for N=22.

4.3 Approximation ratio results for a euclidean distance created graph

In the following tables, we provide the approximation ratio achieved after optimization for various
system sizes and values p for a single euclidean distance created graph with seed=0 and distance
between the two clusters equal to 3. We investigated various values of distance between the two
clusters (1,2,3,4,5) for N=6 and we noticed that the highest approximation ratio was clearly achieved
with distance=3. We denote with N the number of qubits used in the graph, with p the number
of alternating cost Hamiltonians and mixing Hamiltonians, with Opt energy the optimal energy
for the specific graph (based on N and p), with Energy the energy achieved after the optimization
based on the best set of angles that were found by QAOA and with Ratio the approximation ratio
as calculated in equation 7.
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N p Opt energy Energy Ratio
6 1 -9.83728 -3.37546 0.72685
6 2 -9.83728 -6.73818 0.86900
6 3 -9.83728 -8.77447 0.95507
6 4 -9.83728 -9.64414 0.99184
6 5 -9.83728 -9.76589 0.99698
6 6 -9.83728 -9.80732 0.99873
6 7 -9.83728 -9.82135 0.99933
6 8 -9.83728 -9.82319 0.99940
6 9 -9.83728 -9.82513 0.99949
6 10 -9.83728 -9.82646 0.99954
6 11 -9.83728 -9.83153 0.99976

Table 19: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=6.

N p Opt energy Energy Ratio
8 1 -17.77849 -5.02576 0.72583
8 2 -17.77849 -10.47441 0.84297
8 3 -17.77849 -14.09097 0.92072
8 4 -17.77849 -16.18225 0.96568
8 5 -17.77849 -17.25728 0.98880
8 6 -17.77849 -17.53122 0.99468
8 7 -17.77849 -17.67189 0.99771
8 8 -17.77849 -17.67867 0.99785
8 9 -17.77849 -17.69620 0.99823
8 10 -17.77849 -17.71313 0.99860
8 11 -17.77849 -17.71329 0.99608

Table 20: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=8.
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N p Opt energy Energy Ratio
10 1 -31.70878 -7.56247 0.71332
10 2 -31.70878 -17.33204 0.82931
10 3 -31.70878 -24.09536 0.90961
10 4 -31.70878 -28.89760 0.96662
10 5 -31.70878 -30.74372 0.98854
10 6 -31.70878 -31.19272 0.99387
10 7 -31.70878 -31.45601 0.99700
10 8 -31.70878 -31.60408 0.99876
10 9 -31.70878 -31.65797 0.99940
10 10 -31.70878 -31.67367 0.99958
10 1 1 -31.70878 -31.68413 0.99971

Table 21: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=10.

N p Opt energy Energy Ratio
12 1 -45.93418 -9.67121 0.70032
12 2 -45.93418 -24.13374 0.81984
12 3 -45.93418 -33.62432 0.89827
12 4 -45.93418 -40.90837 0.95847
12 5 -45.93418 -44.11694 0.98498
12 6 -45.93418 -44.87184 0.99122
12 7 -45.93418 -45.29129 0.99469
12 8 -45.93418 -45.45997 0.99608
12 9 -45.93418 -45.55154 0.99684
12 10 -45.93418 -45.61508 0.99736
12 11 -45.93418 -45.63918 0.99756

Table 22: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=12.
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N p Opt energy Energy Ratio
14 1 -66.96014 -6.80840 0.65523
14 2 -66.96014 -27.23838 0.77233
14 3 -66.96014 -42.41057 0.85929
14 4 -66.96014 -54.23392 0.92706
14 5 -66.96014 -61.20554 0.96702
14 6 -66.96014 -62.25307 0.97302
14 7 -66.96014 -64.25735 0.98451
14 8 -66.96014 -64.48870 0.98581
14 9 -66.96014 -65.07487 0.98919

Table 23: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=14.

N p Opt energy Energy Ratio
16 1 -80.90278 -6.94345 0.65632
16 2 -80.90278 -33.08181 0.77778
16 3 -80.90278 -47.50294 0.84480
16 4 -80.90278 -61.63884 0.91048
16 5 -80.90278 -70.52911 0.95180
16 6 -80.90278 -72.49501 0.96093
16 7 -80.90278 -76.05297 0.97746
16 8 -80.90278 -78.40711 0.98840

Table 24: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=16.

N p Opt energy Energy Ratio
18 1 -95.57189 -7.28723 0.66184
18 2 -95.57189 -33.69307 0.76298
18 3 -95.57189 -52.31827 0.83432
18 4 -95.57189 -67.61457 0.89291
18 5 -95.57189 -79.85089 0.93978
18 6 -95.57189 -83.25423 0.95282

Table 25: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=18.
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N p Opt energy Energy Ratio
20 1 -116.58154 -7.83192 0.66010
20 2 -116.58154 -44.20470 0.77378
20 3 -116.58154 -61.01297 0.82632
20 4 -116.58154 -80.31623 0.88665
20 5 -116.58154 -95.51660 0.93416

Table 26: Results for approximation ratio for the euclidean distance created graph (seed=0) for
N=20.

Figure 2: Approximation ratio for a single graph (seed=0) for the euclidean distance created graph for the
Max Cut problem for various values of N and p.

4.4 Optimal angles for a single euclidean distance created graph (seed=0)

In the following tables, we provide the optimal angles found after optimization for various values of
N and p for the single euclidean distance created graph (seed=0). Each beta parameter is denoted
with B and each gamma parameter is denoted with G.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7 B8 G8 B9 G9 B10 G10
6 1 2.5073 0.2007
6 2 2.0664 0.2067 2.3250 0.3082
6 3 2.0519 0.1917 1.9889 0.2962 2.5070 0.3440
6 4 2.2453 0.1242 2.2581 0.2412 2.2368 0.2388 2.6259 0.3344
6 5 2.1831 0.0963 2.4398 0.1975 2.3725 0.1940 2.4445 0.2281 2.7580 0.3127
6 6 2.1982 0.0871 2.4278 0.1745 2.4232 0.1885 2.4806 0.1954 2.5887 0.2514 2.9222 0.3283
6 7 2.1526 0.0819 2.4382 0.1664 2.4412 0.1783 2.4834 0.1889 2.5740 0.2204 2.7372 0.2756 3.0008 0.3764
6 8 2.0249 0.0678 2.3341 0.1508 2.4535 0.1711 2.4889 0.1834 2.5051 0.2010 2.6298 0.2371 2.7967 0.2875 3.0239 0.3833
6 9 2.0256 0.0678 2.3347 0.1508 2.4524 0.1711 2.4875 0.1834 2.5041 0.2010 2.6276 0.2371 2.7927 0.2861 3.0224 0.3851 3.1324 4.0744
6 10 2.0377 0.0675 2.3395 0.1508 2.4498 0.1716 2.4903 0.1816 2.5064 0.2001 2.6231 0.2369 2.7915 0.2828 3.0210 0.3741 3.1284 4.0235 0.0106 4.9761
6 11 2.0491 0.0675 2.3445 0.1509 2.4479 0.1719 2.4923 0.1801 2.5071 0.1996 2.6196 0.2370 2.7902 0.2814 3.0174 0.3758 3.1232 4.0297 0.0100 4.8879 0.0122 2.8076

Table 27: Optimal angles for the euclidean distance created graph (seed=0) for N=6.
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N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7 B8 G8 B9 G9 B10 G10
10 1 2.5867 0.1086
10 2 2.2344 0.1060 2.3337 0.1607
10 3 2.0567 0.0970 2.0553 0.1311 2.1443 0.1797
10 4 2.1083 0.0930 1.9319 0.12707 2.2456 0.1463 95518 0.1700
10 5 2.2715 0.0518 2.1426 0.1281 2.1017 0.1066 2.3531 0.1520 2.6572 0.1550
10 6 2.2715 0.0562 2.3674 0.1014 2.2882 0.0845 2.4202 0.1050 2.4618 0.1277 2.7935 0.1543
10 7 2.2456 0.0530 2.3785 0.0979 2.3188 0.0828 2.4090 0.0976 2.4210 0.1218 2.6037 0.1409 2.9535 0.1879
10 8 2.1842 0.0463 2.4002 0.0888 2.3397 0.0841 2.3891 0.0941 2.4440 0.1073 2.5277 0.1233 2.7262 0.1492 2.9829 0.1981
10 9 2.1113 0.0398 2.3644 0.0818 2.3868 0.0831 2.3774 0.0911 2.4446 0.0983 2.5137 0.1086 2.6190 0.1236 2.7973 0.1494 2.9964 0.1900
10 10 2.0823 0.0356 2.3339 0.0752 2.3821 0.0819 2.3843 0.0904 2.4260 0.0950 2.5058 0.1014 2.5768 0.1111 2.7078 0.1273 2.8645 0.1496 3.0275 0.1790
10 11 2.0931 0.0329 2.3459 0.0693 2.3705 0.0812 2.4009 0.0899 2.4331 0.0901 2.4875 0.0989 2.5518 0.1079 2.6549 0.1201 2.7877 0.1415 2.9273 0.1690 3.0829 0.1987

Table 29: Optimal angles for the euclidean distance created graph (seed=0) for N=10.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7 B8 G8 B9 G9 B10 G10
12 1 2.5947 0.0993
12 2 2.2648 0.0911 2.3133 0.1354
12 3 2.0689 0.0803 2.0581 0.1087 2.4501 0.1463
12 4 2.1205 0.0766 1.8888 0.1022 2.2548 0.1184 2.5057 0.1407
12 5 2.1142 0.0637 1.9594 0.1057 2.1422 0.1024 2.3254 0.1205 2.6759 0.1314
12 6 2.0529 0.0590 1.9892 0.1004 2.1069 0.1038 2.2664 0.1120 2.4633 0.1213 2.8660 0.1447
12 7 2.0337 0.0555 2.0059 0.0988 2.0964 0.1034 2.2447 0.1087 2.3986 0.1179 2.6580 0.1310 2.9494 0.1654
12 8 2.0029 0.0521 2.0094 0.0927 2.1163 0.1032 2.2264 0.1020 2.3884 0.1076 2.5587 0.1111 2.7472 0.1267 2.9678 0.1582
12 9 1.9933 0.0517 2.0062 0.0916 2.1148 0.1026 2.2257 0.1005 2.3814 0.1031 2.5162 0.1036 2.6532 0.1180 2.8156 0.1421 3.0238 0.1655
12 10 1.9789 0.0504 1.9844 0.0892 2.1262 0.1011 2.2083 0.1006 2.3578 0.0996 2.4683 0.1022 2.5649 0.1127 2.7162 0.1326 2.8709 0.1548 3.0501 0.1805
12 11 1.9697 0.0489 1.9732 0.0871 2.1166 0.0989 2.1994 0.1003 2.3330 0.0978 2.4423 0.0973 2.5073 0.1061 2.6412 0.1186 2.7993 0.1283 2.9112 0.1379 3.0506 0.1698

Table 30: Optimal angles for the euclidean distance created graph (seed=0) for N=12.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7 B8 G8
14 1 2.7476 0.0383
14 2 2.2876 0.0849 2.3020 0.0757
14 3 2.0985 0.0791 1.9875 0.0833 2.4564 0.1069
14 4 1.9910 0.0730 1.8480 0.0810 2.0940 0.1043 2.4990 0.1114
14 5 2.1084 0.0518 1.9121 0.0843 2.0414 0.0843 2.2037 0.0986 2.5835 0.1089
14 6 1.9590 0.0402 2.0346 0.0754 2.0777 0.0825 2.1849 0.0786 2.3105 0.0918 2.6631 0.1026
14 7 2.0775 0.0514 1.9497 0.0848 2.0767 0.0804 2.2272 0.0931 2.2627 0.0966 2.5210 0.1104 2.7756 0.1273
14 8 2.1200 0.0505 1.9741 0.0841 2.1493 0.0749 2.3173 0.0844 2.3742 0.0849 2.6410 0.0789 2.7455 0.0803 2.8210 0.1020
14 9 2.0158 0.0445 2.0474 0.0736 2.2049 0.0758 2.2937 0.0698 2.4135 0.0790 2.5210 0.0780 2.6035 0.0800 2.7054 0.0980 2.8777 0.1000

Table 31: Optimal angles for the euclidean distance created graph (seed=0) for N=14.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5 B6 G6 B7 G7
16 1 2.8017 0.0336
16 2 2.1634 0.0749 2.1814 0.0799
16 3 2.0792 0.0724 1.9623 0.0760 2.4286 0.0957
16 4 2.0609 0.0651 1.8506 0.0733 2.1391 0.0957 2.5225 0.0938
16 5 2.0496 0.0524 1.8823 0.0777 1.9740 0.0831 2.1862 0.0925 2.5523 0.0998
16 6 1.8816 0.0424 1.9849 0.0689 1.9577 0.0846 2.0821 0.0823 2.2213 0.0902 2.6149 0.1010
16 7 1.9980 0.0523 1.9271 0.0769 1.9889 0.0808 2.1837 0.0919 2.2509 0.0924 2.4781 0.1044 2.7592 0.1214
16 8 2.0424 0.0486 1.9280 0.0764 2.0481 0.0768 2.2271 0.0852 2.3179 0.0879 2.5677 0.1007 2.6961 0.1247 2.9667 0.1365

Table 32: Optimal angles for the euclidean distance created graph (seed=0) for N=16.

N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4 B5 G5
18 1 2.8417 0.0300
18 2 2.3480 0.0799 2.2783 0.0635
18 3 2.2288 0.0560 2.0012 0.0760 2.5593 0.0647
18 4 1.9341 0.0697 1.8679 0.0667 2.0435 0.0866 2.4169 0.0998
18 5 2.2366 0.0568 1.9744 0.0631 2.2439 0.0585 2.2341 0.0779 2.5355 0.0863
18 6 2.1925 0.0428 2.0128 0.0692 2.1654 0.0599 2.3453 0.0606 2.4100 0.0673 2.6230 0.0750

Table 33: Optimal angles for the euclidean distance created graph (seed=0) for N=18.
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N p B0 G0 B1 G1 B2 G2 B3 G3 B4 G4
20 1 2.8739 0.0262
20 2 2.2894 0.0694 2.1433 0.0694
20 3 2.1292 0.0720 1.9437 0.0638 2.4638 0.0888
20 4 1.9891 0.0565 1.9073 0.0625 2.0668 0.0777 2.4922 0.0859
20 5 2516 0.0509 1.8926 0.0577 2.1914 0.0579 2.1927 0.0726 2.5295 0.0789

Table 34: Optimal angles for the euclidean distance created graph (seed=0) for N=20.

5 Going from a single graph to many

An important aspect that needs to be evaluated is whether we can get generalized results for a
single graph. More accurately, whether the optimal angles that were found for a single graph can
be used as the optimal angles of a different graph of the same type, same size and same level p. It
has been shown that for graphs that have some underlying pattern, this type of generalization can
be achieved.
For example, it has been proven for 3-regular graphs that generalization can occur based on the
optimal parameters found from a single graph, which is also indicated in our simulations (see the
following two figures). It was observed that for any p, if we fix parameters such that the objective
function has a high value at some small number of qubits. then those same parameters will produce
a high value at a larger number of qubits (N) [28]

Figure 3: Approximation ratio for a 100 graphs with different seeds for the 3-regular graphs for the
Max Cut problem for various values of I and p.
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Figure 4: Approximation ratio for a 100 graphs with different seeds for the euclidean distance cre-
ated graph for the Max Cut problem for various values of N and p.

On the contrary to the 3-regular graphs, which have a straight forward underlying construction
pattern that helps generalization, the euclidean distance created graphs cannot generalize as well.
The reasoning for that can be either that the true optimal parameters have not been found in
our simulations when the optimization occurred for the single graph with seed=0 or that such
generalization cannot easily be extrapolated from small system sizes. Based on the nature of the
construction of these graphs, it can be assumed that the position of the separating plane between
the two clusters plays an important role to generalization. This is even more evident as the system
size increases, for example for N ≥ 14 in Figure 4.

6 Initial angles strategy analysis

Providing QAOA with good initial angles before it starts the optimization process is an extremely
meaningful step that can only increase the performance of QAOA. The initial angles are a set of
angles that have been calculated in a classical way, in a pre-processing step and are then provided
to QAOA as the starting point for the search of the optimal angles. In that way, QAOA spends
time in the subspace where the optimal angles can be found, instead of randomly searching the
whole Hilbert space querying the energy landscape with calls to the quantum computer, which is
exponentially difficult as level p increases.

The first thing that should be considered before starting with any strategy for finding good initial
angles is whether the problem that is being solved has an degeneracies because of symmetries in the
parameter space.

Generally, QAOA has a time-reversal symmetry, FP (γ⃗, β⃗) = FP (−⃗γ, −⃗β) since both HC and HB
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are realvalued. Furthermore, for problems like the Max Cut, there is an additional Z2 symmetry
as e−i(π/2)HB ≡ (σx)⊗N commutes through the circuit. Moreover, the structure of the Max Cut
problem on unweighted d-regular graphs creates redundancy, since e−iπHC = 1 if d is even and
(σz)⊗N if d is odd. This allow us to restrict βi = [−π/4, π/4) in general and γi = [−π/2, π/2) for
unweighted d-regular graphs. [2]

Specifically for the d-regular graphs. it has been observed that there is concentration of the
parameters, with the distribution of each parameter becoming narrower as level p is increasing.
Such behaviour can be exploited by finding the average optimal parameters once and reuse them
for all instances, thereby eliminating the computational cost per instance of finding the optimal
parameters. In addition to that one can find the optimal parameters without any call to the QPU
leveraging the experimental finding that the optimal parameters do not depend on the problem size
[20]. According to this scenario, one can find the optimal parameters for a small instance problem,
and then utilize these as initial parameters in a larger instance of the same problem [28].

Figure 5: Evidence of concentration of the optimal parameter distribution for d-regular graphs [20]

Furthermore it has been shown that for d-regular graphs the optimal γ∗
i tends to increase smoothly

with i = 1, 2, · · · , p, while β∗
i tends to decrease smoothly [2].
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Figure 6: Evidence of trends for γ∗
i and β∗

i for d-regular graphs [2]

After the suitable subspace has been found, it can be explored for the best possible initial angles
(parameters). By initializing parameters in the neighborhood of a local minimum of the cost land-
scape, one ensures more consistent local optimization convergence in a fewer number of iterations
and a better overall answer with respect to the global landscape. Good initialization is thus crucial
to promote the convergence of local optimizers to local extrema and to select reasonably good local
minima [21]. This process occurs in the classical computer and many schemes have been proposed.
The simplest strategy that can be employed is random initialization, where one picks a random set of
parameters in the chosen subspace to begin optimization. However, in order to find the global opti-
mum in a highly non-convex landscape, the number of random initialization runs needed generically
scales exponentially with the number of parameters, which becomes intractable for large number of
parameters [30]. Furthermore, parametrized quantum circuits initialized with random initial param-
eter values are characterized by barren plateaus where the gradient becomes exponentially small in
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the number of qubits [8], therefore an exponentially large precision is needed to navigate through
the landscape [13]. There have been proposed strategies [18, 29, 27, 25, 2, 1] to avoid the vanishing
gradient problein (barren plateaus) by providing solutions to overcome these limitations, however it
is not that straightforward how to solve them. Also, noise from experimental devices will definitely
affect the cost landscape, therefore making it harder to find the optimal parameters under noisy
conditions. Besides random initialization, there have been proposed various heuristic strategies to
find the best initial parameters, such as the

• The interpolation method
The interpolation method uses linear interpolation to choose initial parameters starting at
level p = 1. After level p = 1 is optimized one can linearly interpolate the curve formed by
optimized parameters at level p to extract a set of initial parameters for level p+ 1 [30].

• The Fourier method
The Fourier method uses a new parameterization of QAOA. Instead of using the 2p parameters
(γ⃗, β⃗) ∈ R2p, we switch to 2q parameters (u⃗, v⃗) ∈ R2p, where the individual elements γi and
βi are written as functions of (u⃗, v⃗) through the following transformation:

γi =

q∑
k=1

uk sin[(k − 1/2)(i− 1/2)π/p] (9)

βi =

q∑
k=1

vk cos[(k − 1/2)(i− 1/2)π/p] (10)

These transformations are known as Discrete Sine/Cosine Transform, where uk and vk can be
interpreted as the amplitude of kth frequency component for γ⃗ and β⃗, respectively. In this
strategy, when optimizing level p+1, the initial parameters are generated by simple re-using the
optimized amplitudes (u⃗∗, v⃗∗) from level p. Note that when q ≥ p, the (u⃗, v⃗) parametrization
is capable of describing all possible QAOA protocols at level p [30].

• Classical neural networks, meta-learners
In [26], the authors train classical neural networks to assist in the quantum learning process,
which is also know as meta-learning, to rapidly find approximate optima in the parameter
landscape for several classes of quantum variational algorithms. Specifically, they train classical
recurrent neural networks to find approximately optimal parameters within a small number of
queries of the cost function. In [28], the authors similarly train classical neural networks to
evaluate the optimization of quantum heuristics. They show that the meta-learner comes near
to the global optima more frequently than all other optimizers tested in a noisy parameter
setting environment. They also find that the meta-learner is generally more resistant to noise,
for example seeing a smaller reduction in performance in Noisy and Sampling environments
and performs better on average by a ’gain’ metric than its closest comparable competitor
L-BFGS-B.

• Elimination of the classical outer learning loop and temsor network techniques In [22], the
authors propose a strategy that eliminates the classical outer learning loop of the QAOA,
which speeds up the search for initial parameters significantly, since there are no calls to the
quantum computer. They present a strategy to find good parameters for QAOA based on
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topological arguments of the problem graph and tensor network techniques. Starting from the
observation of the concentration of control parameters of QAOA, they find a way to classically
infer parameters which scales polynomially in the number of qubits and exponentially with the
depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed
to infer the final state of QAOA.

In our simulations, we used a grid search optimizer with a decreasing step ranging from 0.1 to 0.0001
to find the optimal parameters for p = 1 for all N explored in the two problems that were studied.
For every following level p, we used a linear interpolation technique for the parameters up to the
last pair and the same grid search approach for the last pair of parameters.

We have verified that there exists concentration in the parameter distribution for both type of
problems that were tested and that the interpolation technique can be effortlessly utilized. To bet-
ter showcase these findings, we present the following figures. [?] We start with the parameter (β, γ)

analysis for N=12 and p=1 up to 4 and present the trend of the angles for the 3-regular graph with
seed=0.

Figure 7: Presentation of the trends in the four paris of (β, γ) angles for the 3-regular graph with seed=0
with a quantum system of N=12 qubits.

We present the corresponding figure for the euclidean distance created graph with seed=0 (N=12,
p=15).

Figure 8: Presentation of the trends in the four paris of (β, γ) angles for the euclidean distance created graph
with seed=0 with a quantum system of N=12 qubits.

21



Based on the figures 7 and 8, it is straightforward to see what the initial angles for each (β, γ)
angle should be for the same set of angles for the following level p. Then the only unknown remains
the last pair of the new level p, which can be found either by classical optimization (for example
grid search) or by looking at the last pair of the same p of another N.
In order to compare with Figure 6, we present the following graphs indicating how the trend of the
(β, γ) values progress for the same p (in our case we considered p=3) for the 3-regular and euclidean
distance created graph with seed=0 for N=6 up to 20.

Figure 9: Presentation of the trends in the three pairs of (β, γ) angles for the 3-regular graph with seed=0
with a quantum system ranging from N=6 to 20 qubits.

Figure 10: Presentation of the trends in the three pairs of (β, γ) angles for the euclidean distance created
graph with seed=0 with a quantum system ranging from N=6 to 20 qubits.

Based on the figures 9 and 10, we draw the conclusion that for the 3-regular graphs there is a
clear trend for each (β, γ) angle. However, the actual values are not entirely consistent in our simu-
lations (there is a change in the values, although respecting the trend) that appears at N=14. We
believe that this has occurred due to the degeneracies of the 3-regular graph, since the bounds that
we assumed for both types of graphs that were considered were γ = [0, 2π] and β = [0, π] which
allows many degeneracies in the case of 3-regular graphs. Thus, we believe that by taking the sym-
metrical values to the ones reported for N ≥ 14, we could follow closely the values obtained for (β, γ)
for N ≤ 12. In the case of the euclidean distance created graph, things are even clearer. We observe
that especially for the γ angles the trend is clear, but in general the changes in the actual values for
both β and γ are very small and predictable. Therefore, we can get a good estimate for the initial
(β, γ) angles for the same level p for a different N based on these values. Then, the optimizer should
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be sufficiently close to the optimal values, which gives a higher probability of finding the optimal
angles for the system size N that is being tested.

7 Access to QPU’s

An important aspect of the designed QAOA library that has not been highlighted enough so far in
this report is the ability to run this implementation of QAOA to various QPUs through cloud ser-
vices. We have an operational connection to the different QPUs of Rigetti [1] and IonQ [11] through
the Amazon Web Services (AWS) [7] cloud services. AWS is providing on-demand cloud computing
platforms and APIs to individuals and companies, on a metered pay-as-you-go basis. These cloud
computing web services provide a variety of basic abstract technical infrastructure and distributed
computing building blocks and tools, through the Internet [15].

The ability to run algorithms in such devices is extremely important, because there are a lot of
factors that are not taken into account when designing the quantum algorithm. Factors like the
realistic levels of noise, routing of quantum states, extra resources required to correctly perform the
algorithm and many more, end up giving much worse results compared to simulations of the quan-
tum algorithm. Addressing such issues helps design more efficient quantum algorithms and increase
their performance under a realistic scenario. Furthermore, quantum hardware is also constantly
becoming more trustworthy (increased fidelities of quantum gates and operations), available to hold
more qubits and able to run faster than before.

8 Conclusions

This project involved the implementation of the Quantum Approximate Optimization Algorithm
(QAOA) in an in-house library and experimenting with it. The classification problem of Max Cut
was selected as the problem to be analyzed and two types of graph problems were investigated:
3-regular graphs and Euclidean distance created graphs. The library that was created has the capa-
bilities to run the QAOA algorithm in a variety of simulators and QPUs offered by various platforms
such as Rigetti, IBM and AWS. At each platform there is the ability to either run in a simula-
tor (WaveFunction or BitString) or a Quantum Processing Unit (QPU). Furthermore, we added a
module that simulates readout (measurement) noise in the system, so that we have the ability to
potentially test the performance against a noisy environment which makes the implementation more
realistic compared to current hardware. Moreover, we implemented a custom made optimizer as well
as added many available optimizers from other sources. Also, we implemented a strategy of finding
good initial angles before the starting the optimization by designing a technique that incorporates
proposals from publications as well as our own observations.
We have presented the results of the simulations that were run on the Wave Function simulator of
the Rigetti platform without adding any readout noise. These simulations indicated that the imple-
mented QAOA works well and is able to obtain similar results compared to other recent publications.
Future work could include comparing different optimizers to each other and ranking them, exper-
imenting with shot noise in the BitString simulator and readout noise in the results of QAOA.
Furthermore, running QAOA to an available QPU would be extremely interesting since it will in-
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dicate how much the performance of QAOA is affected because of the hardware noise. Comparing
these results with no noise, shot noise and readout noise would be greatly beneficial. [?]
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